Total Synthesis of the Sesqiterpene (+/-)-Illudin C via an Intramolecular Nitrile Oxide Cycloaddition

Ronald A. Aungst, Jr., Collin Chan, and Raymond L. Funk*

Department of Chemistry, Pennsylvania State University University Park, Pennsylvania 16802

2-Bromo-4,4-dimethylcyclopent-1-enecarboxaldehyde (8).To a solution of DMF (513 mL, 6.63 mmol) in CH₂Cl₂ (10 mL) was added POBr₃ (1.58 g, 5.52 mmol) at rt. The solution was stirred at rt for 1 h as a white precipitate formed. A solution of silylenol ether 7 (500 mg, 2.21 mmol) in CH₂Cl₂ (2 mL) was added to the mixture and the resultant slurry was stirred 72 h at rt and poured onto ice (5 g). The solution was neutralized with NaHCO₃ and extracted with hexane/ $Et_2O(9:1)$. The combined organic layers were washed with saturated aqueous NaHCO₃, dried (Na₂SO₄) and concentrated. Purification by silica-gel chromatography (ethyl acetate-hexane, 3: 97, silica-gel deactivated with 10% triethylamine) gave exclusively one regioisomer as a colorless oil (289 mg, 64%): 1 H NMR (200 MHz, CDCl₃) δ 1.11 (s, 6 H), 2.29 (t, J = 2.2 Hz, 2 H), 2.67 (t, J = 2.2Hz, 2 H), 9.83 (s, 1 H); ¹³C NMR (50 MHz, CDCl₃) δ 29.3 (2 C), 37.5, 43.8, 56.8, 139.0, 139.2, 189.2; IR (neat) 1675, 1608 cm⁻¹.

2-Bromo-4,4-dimethylcyclopent-1-enecarboxaldehyde

oxime (9). To a solution of aldehyde **8** (325 mg, 1.60 mmol) in EtOH (4 mL) was added a solution of H₂NOH·HCl (167 mg, 2.40 mmol) and sodium acetate (197 mg, 2.40 mmol) in EtOH/H₂O (2.70 mL, 1 : 1) dropwise at 0 °C. The mixture was stirred 1.5 h at rt and the EtOH was concentrated off. Brine was added and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄) and concentrated. Purification by silica-gel chromatography (Et₂O-CH₂Cl₂-hexane, 4 : 45 : 51) provided a white solid (285 mg, 82%): ¹H NMR (200 MHz, d⁶-acetone) δ 1.12 (S, 6 H), 2.32 (td, J = 0.7, 2.0 Hz, 2 H), 2.56 (t, J = 2.0 Hz, 2 H), 7.93 (s, 1 H), 10.39 (s, 1 H); ¹³C NMR (50 MHz, d⁶-acetone) δ 29.6 (2C), 38.0, 46.4, 55.8, 123.0, 134.4, 145.7; IR (neat) 3286, 1626 cm⁻¹; HRMS (M+H⁺) calcd for C₈H₁₃ONBr 218.0181, found 218.0198.

1-[1-(1-Hydroxyethyl)-cyclopropyl]-ethanone(11). Lithium tri(tert-butoxy)alumninohydride (15.9 mL, 1.0 M in THF, 15.9 mmol) was added dropwise to a solution of dione 10 (2.00 g, 15.9 mmol) in Et₂O (80 mL) at -78 °C. The solution was slowly warmed to rt and stirred overnight. A saturated aqueous solution of sodium potassium tartrate was added and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with saturated aqueous sodium potassium tartrate, dried (Na₂SO₄) and concentrated. Purification by silica-gel chromatography (ethyl acetate-benzene, 1 : 4) yielded a colorless oil (1.18 g, 58%): ¹H NMR (200 MHz, CDCl₃) δ 0.86 (dd, J = 3.1, 5.2 Hz, 2 H), 0.96–1.06 (m, 2 H), 1.04 (d, J = 6.6 Hz, 3 H), 2.02 (s, 3 H), 3.36 (br d, J = 6.6

Hz, 1 H), 3.67 (br p, J = 6.6 Hz, 1 H); ¹³C NMR (50 MHz, CDCl₃) δ 11.8, 13.8, 19.8, 24.5, 36.9, 68.8, 209.8; IR (neat) 3440, 1682 cm⁻¹.

1-(1-Vinyl-cyclopropyl)-ethanone (6). To a solution of ketoalcohol 11 (1.20 g, 9.35 mmol) in benzene (50 mL) was added imidazole (700 mg, 10.28 mmol), triphenylphosphine (2.70 g, 10.28 mmol) and lastly iodine (2.66 g, 10.47 mmol). The solution was stirred 1 h at rt and poured onto a 1:1 solution of 10% Na₂S₂O₃ and saturated aqueous NaHCO3. The aqueous layer was extracted with hexane and the combined organic layers were dried (Na₂SO₄) Purification by silica-gel chromatography and concentrated. (Et₂O-pentane, 2:23) afforded a yellow oil (1.81 g, 82%): ¹H NMR $(200 \text{ MHz}, \text{CDCl}_3) \delta 1.07 \text{ (ddd, } J = 4.1, 6.6, 9.4 \text{ Hz}, 1 \text{ H}), 1.22 \text{ (ddd, } J = 4.1, 6.6, 9.4 \text{ Hz}, 1 \text{ H})$ J = 4.3, 6.2, 9.4 Hz, 1 H), 1.44 (ddd, J = 4.1, 6.2, 9.5 Hz, 1 H), 1.60 (ddd, J = 4.3, 6.6, 9.5 Hz, 1 H), 1.81 (d, J = 7.2 Hz, 3 H), 2.08 (s, 3)H), 4.64 (q, J = 7.2 Hz, 1 H). The above iodide (1.63 g, 6.85 mmol) was immediately subjected to elimination by addition of DBU (2.05 mL, 13.7 mmol). The neat mixture was heated to 85 °C at reduced pressure (20 mmHg) as the product was distilled over and trapped at -78 °C to yield a volatile colorless oil (440 mg, 58%): ¹H NMR $(360 \text{ MHz}, \text{CDCl}_3) \delta 1.01 \text{ (q, } J = 3.5 \text{ Hz}, \text{ 2 H)}, 1.35 \text{ (q, } J = 3.5 \text{ Hz}, \text{ 2})$ H), 2.15 (s, 3 H), 4.99 (dd, J = 1.1, 17.1 Hz, 1 H), 5.07 (dd, J = 1.1, 10.5 Hz, 1 H), 6.46 (dd, J = 10.5, 17.1 Hz, 1 H); ¹³C NMR (90 MHz, CDCl₃) δ 18.8 (2 C), 27.7, 34.0, 114.6, 136.7, 207.6; IR (neat) 1697, 1639 cm⁻¹.

2-[1-Hydroxy-1-(1-vinylcyclopropyl)-ethyl]-4,4-

dimethylcyclopent-1-enecarboxaldehyde oxime (4). To a solution of oxime 9 (100 mg, 0.46 mmol) in THF (2.5 mL) at -78 °C was added tert-butyllithium (837 µL, 1.7 M in pentane, 1.42 mmol) dropwise. The resultant yellow solution was stirred at -78 °C for 1.5 h. A solution of ketone 6 (66 mg, 0.60 mmol) in THF (2 mL) was added dropwise over 1 h and the resultant solution was slowly warmed to rt over 1 h. The mixture was poured onto saturated aqueous NaHCO₃ and the aqueous layer was extracted with Et₂O. The combined organic extracts were dried (Na₂SO₄)Purification by silica-gel chromatography (ethyl concentrated. acetate-iso-propanol-hexane, 1:0.01:4) yielded a white solid (77 mg, 68%): ¹H NMR (360 MHz, CDCl₃) δ 0.56 (ddd, J = 3.3, 5.0, 8.6Hz, 1 H), 0.77 (ddd, J = 4.4, 5.8, 8.6 Hz, 1 H), 0.84 (ddd, J = 4.4, 5.0, 9.7 Hz, 1 H), 0.89 (ddd, J = 3.3, 5.8, 9.7 Hz, 1 H), 1.05 (s, 3 H), 1.07 (s, 3 H), 1.15 (s, 3 H), 2.24 (dt, J = 1.8, 17.0 Hz, 1 H), 2.36 (dt, J = 1.6, 17.0 Hz, 1 H), 2.41 (br s, 2 H), 4.94 (dd, J = 1.3, 17.5)Hz, 1 H), 4.96 (dd, J = 1.3, 10.3 Hz, 1 H), 6.14 (dd, J = 10.3, 17.5 Hz, 1 H), 8.2 (br s, 1 H), 8.83 (s, 1 H); 13 C NMR (50 MHz, 6 acetone) δ 11.1, 12.3, 25.3, 29.6, 32.1, 36.7, 48.4, 51.6, 76.2, 111.5, 130.6, 141.9, 149.7, 150.1; IR (neat); HRMS (M+H+) calcd for C₁₅H₂₄O₂N 250.1807, found 250.1786.

Cycloadduct (2). To a solution of hydroxyoxime 4 (97 mg, 0.39 mmol) in EtOH (4 mL) was added chloramine-T (134 mg, 0.59 mmol) at rt. The mixture was heated to 40 °C for 6 h then concentrated. The residue was dissolved in EtOAc and the organic phase was washed with 1.0 M NaOH (3x) and brine (2x) The organic layer was dried (Na₂SO₄) and concentrated to provide a white solid as a single diastereomer (95 mg, 99%): ¹H NMR (400 MHz, CDCl₃) δ 0.18 (ddd, J = 4.6, 5.3, 10.1 Hz, 1 H), 0.55 (ddd, J = 3.5, 4.9, 10.1Hz, 1 H), 0.72 (ddd, J = 4.6, 4.9, 10.0 Hz, 1 H), 0.77 (ddd, J = 3.5, 5.3, 10.0 Hz, 1 H), 1.12 (s, 3 H), 1.15 (s, 3 H), 1.29 (s, 1 H), 1.43 (s, 3 H), 2.31 (dt, J = 1.8, 17.8 Hz, 1 H), 2.39 (dt, J = 1.8, 12.7 Hz, 1 H), 2.44 (dt, J = 1.8, 12.7 Hz, 1 H), 2.54 (dt, J = 1.8, 17.8 Hz, 1 H), 3.43 (dd, J = 7.9, 13.1 Hz, 1 H), 3.88 (dd, J = 10.3, 13.1 Hz, 1 H), 4.29 (dd, I = 7.9, 10.3 Hz, 1 H); ¹³C NMR (90 MHz, CDCl₃) δ 3.0, 5.4, 24.5, 28.2, 29.3, 29.6, 38.4, 45.4, 46.5, 49.8, 68.8, 71.2, 129.1, 155.5, 155.8; IR (neat) 3438, 1630, 1587 cm⁻¹; HRMS (M+H+) calcd for C₁₅H₂₂O₂N 248.1651, found 248.1652.

Ketodiol 12. Cycloadduct **2** (92 mg, 0.37 mmol) was dissolved in a MeOH/H₂O (3 mL, 5 : 1) solution. Boric acid (49 mg, 0.79 mmol) and Raney-Ni (20 mg, 50% in H₂O) were added and the mixture was stirred under balloon pressure of hydrogen for 2 h. The solution was poured onto saturated aqueous NaHCO₃ and the aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with saturated aqueous NaHCO₃, dried (Na₂SO₄) and concentrated. Purification by silica-gel chromatography (ethyl acetate-isopropanol-hexane, 1 : 0.05 : 1) to afford a colorless oil

(68 mg, 73%): 1 H NMR (360 MHz, CDCl₃) δ 0.35 (dt, J = 4.5, 9.5 Hz, 1 H), 0.42 (dt, J = 4.5, 9.5 Hz, 1 H), 0.74 (dt, J = 4.5, 9.7 Hz, 1 H), 0.86 (dt, J = 4.5, 9.7 Hz, 1 H), 0.99 (s, 3 H), 1.04 (s, 3 H), 1.11 (s, 3 H), 1.70 (t, J = 3.2 Hz, 1 H), 2.34 (t, J = 1.6 Hz, 2 H), 2.40 (dt, J = 1.6, 18.2 Hz, 1 H), 2.48 (dt, J = 1.6, 18.2 Hz, 1H), 3.72 (dd, J = 3.2, 10.4 Hz, 1 H), 3.84 (dd, J = 3.2, 10.4 Hz, 1 H), 4.53 (br s, 1 H), 5.31 (br s, 1 H); 13 C NMR (90 MHz, CDCl₃) δ 5.7, 13.9, 21.1, 28.1, 29.1, 29.2, 37.7, 43.9, 47.6, 57.3, 63.1, 38.2, 137.4, 167.1, 199.1;

Illudin C (1). To a solution of ketodiol 12 (43 mg, 0.17 mmol) in CH₂Cl₂ (1.7 mL) at -78 °C was added Et₃N (72 mL, 0.52 mmol) and MesCl (16 mL, 0.21 mmol) dropwise. The solution was warmed to 0 °C over 2 h then DBU (51 mL, 0.34 mmol) was added and the mixture was stirred at rt overnight. Saturated aqueous NaHCO3 was added and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄) and concentrated. Purification by silica-gel chromatography (MeOH-CDCl₃, 1:99) to vield a white solid (29 mg, 73%): ¹H NMR (400 MHz, d⁶-benzene) δ 0.19 (ddd, J = 3.5, 6.6, 9.8 Hz, 1 H), 0.75 (ddd, J = 4.9, 6.6, 9.6 Hz,1 H), 0.79 (dt, J = 4.9, 5.1, 9.6 Hz, 1 H), 0.90 (s, 3 H), 0.95 (s, 3 H), 1.17 (s, 3 H), 1.19 (ddd, J = 3.5, 5.1, 9.8 Hz, 1 H), 1.75 (s, 1 H), 2.18 (dt, J = 2.0, 20.0 Hz, 1 H), 2.47 (dt, J = 1.8, 20.0 Hz, 1 H), 2.48(dt, J = 1.8, 16.7 Hz, 1 H), 2.51 (dt, J = 2.0, 16.7 Hz, 1 H), 4.86 (d, J)= 1.6 Hz, 1 H), 6.15 (d, J = 1.6 Hz, 1 H); ¹³C NMR (90 MHz, d⁶benzene) § 5.2, 13.2, 26.1, 29.3, 29.4, 33.4, 37.5, 44.8, 47.9, 70.1, 135.9, 148.4, 169.2, 169.3, 185.7; IR (neat) 3443, 1657, 1605 cm⁻¹.